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ABSTRACT

The Perfectly Matchable Subgraph Polytope of a graph G = (V, E), denoted by
PMS(G) is the convex hull of the incidence vectors of those X C V which induce
a subgraph having a perfect matching. We describe a linear system whose solution
set is PMS(G), for a general (nonbipartite) graph G. We show how it can be derived
via a projection technique from Edmonds’ characterization of the matching polytope
of G. We also show that this system can be deduced from the earlier bipartite case
(2], by using the Edmonds-Gallai structure theorem. Finally, we characterize which
inequalities are facet inducing for PMS(G), and hence essential.

1. Introduction.

A matching in a graph G = (V, E) is a set M of edges such that each node
is incident with at most one member of M. Those nodes incident witl: members
of M are said to be saturated by M. If all nodes are saturated by M, then M is
a perfect matching. We say that S C V induces a perfectly matchable subgraph
of G if the subgraph G[S] induced by S has a perfect matching. We let W
be the set of all such subsets of V, and adopt the convention that @ € W, i.e.
the empty subgraph is perfectly matchable. The perfectly matchable subgraph
polytope of G, denoted by PMS(G), is the convex hull of the 0 — 1 incidence
vectors of the members of W.

In [2] we gave a set of inequalities sufficient to define PMS(G) for a bipartite
graph G. In this paper we give such a system for the general case when G may
be nonbipartite. We first show how a projection method described in [2] can be
used to obtain this system. We then describe how the earlier bipartite result,
together with the Edmonds-Gallai structure theorem can be used to give a
proof.

Optimizing over PMS(G) can be accomplished by solving a special case of
the weighted matching problem. For suppose we have a vector ¢ = (¢, : v € V)
of real node weights and we wish to find z € PMS(G) which maximizes cz,
or equivalently, S € W for which Y (¢, : v € §) is maximum. We define
€uv = Cu + ¢, for every edge uv € E and then find a (not necessarily perfect)
matching M of G for which (¢, : ¢ € M) is maximized. The nodes saturated
by M provide the solution. In fact, this relationship provides the basis for a
derivation of the linear description of PMS(G).

In the next section, we describe the projection method, based on Benders’




2 The perfectly matchable subgraph polytope of an arbitrary graph

decomposition, which we introduced in [2]. We also show how it applies to
PMS(G) for a general graph G. In Section 3 we discuss the relationship of the
bipartite and nonbipartite theorems. In particular, we give a second derivation
of the general result, from the bipartite result, plus the Edmonds-Gallai struc-
ture theorem. In Section 4 we characetrize the facet inducing inequalities for
PMS(G), which enables us to give a minimal defining linear system. Then in
Section 5 we present some concluding remarks.

2. Projection and Cones.

First we describe a general projection method. Suppose we are given a
polyhedron
Z = {(u,z) :A'u + Blz = b*,
A'u+ B’z < b?
u >0,z € D}
where A!, A%, B!, B2 are matrices, b',? are vectors and D is a set to which

all feasible z belong. Let X denote the projection of Z onto the subspace of z
variables, that is,

X = {z : there exists u such that (u,z) € Z}.
We wish to obtain a linear system whose solution set is X.
We define the cone
W = {(y,2) : yA' + zA®> > 0,z > 0}.

Let W be any (finite) set of generators of W. That is, we should have (y,2) e W
if and only if (y,z) can be expressed as a nonnegative linear combination of
members of W.

Then
X ={z € D:(yB' + 2B}z < yb' + 2* (2.1)
for all (y,2) € W}.
In fact (2.1) is quite easy to prove. First suppose y, 2z satisfy

yA' + 242 >0, z > 0 and let (u,z) € Z. Then
yB'z + 2B%z < yb' + zb?
- (yA' + 24%)u,
< yb! + zb?
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and hence z satisfies the linear system of (2.1). Conversely, suppose r ¢ X,
e., there exists no u > 0 such that
Alu=b' - Bz
A%u < b? - Bz,

Then by Farkas' lemma there exists y and z satisfying

yA' + zA? >0
z2>0
y(b* — B'z) + z(b® — B¥z) < 0. (2.2)

But then (y,z) € W and so there must be some member (3, ) of W which also
satisfies (2.2), i.e., (§B' + £B?)z > jb' + ib%. Therefore z does not satisfy the
system (2.1).

In general, the main problem we have to solve is the following: Given a
cone W = {(y,2) : yA! + zA? > 0,z > 0}, find a finite set W of generators.
Such a set can be characterized as follows: First, let I be an index set for the
inequalities defining W. Let

W= = {(y,2) : yA' + 24’ =0,z = 0}.

The set W= is called the lineality space of W and consists of all those
w € W for which aw € W for all a € R. Let W= be any basis of W=. (Note
that if W= consists of just the zero vector, then W= = 0.)

For any (§,2) € W we let I=(§, Z) be the set of indices in I for which the
corresponding inequalities hold as equations for (§,z). (Then (§,z) € W= if
and only if I=(§,2) = I.) Let R be the set of all maximal proper subsets J of
I such that J = I™(y,Z) for some (§,%Z) € W. Then for any J € R, let r(J)
consist of all those (y,z) € W for which I=(y,z) = J. The eztreme elements
of W are the members of r(J), for any J € R. Let W+ consist of one nonzero
member of r(J) for each J € R. Then every member of W can be expressed as
a linear combination of members of W= plus a nonnegative linear combination
of members of W*. Thus if we let W = W= U (~=W=)U W+ we have a set of
generators as required.

If W= contains only the zero vector then W is a pointed cone. In this
case the sets r{J) each consist of all positive multiples of a single member of
W. These sets are called the eztreme rays of the cone W. (This is the case we
encounter here for nonbipartite graphs.)

Now we describe how projection can be used to obtain PMS(G) for a graph
G = (V,E). For any S C V we let §(S) denote the coboundary of S, i.e., the

Ao
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set of edges with exactly one end in §. We write §(v) for o({v}), for any v - V"
We let v(S) denote the set of edges having both ends in S. For any finite set J
and real vector (z,:j € J)and I C J we let z([) denote S (z,:; € I).

The matching polytope of G, denoted by M(G), is the convex hull of the
incidence vectors of the (not necessarily perfect) matchings of G. The following
gives a linear system sufficient to define M(G).

Theorem 2.1 (Edmonds [4]) For any graph G = (V,E),
M(G)={ue RE:

u>0, (2.4)
u(é(v)) <lforallveV, (2.5)
S)) <(IS|-1)/2forall S€ Q} (2.6)

where @ = {S C V :|S| > 3, odd}.

If G is bipartite, then the inequalities (2.6) can be omitted, and the result is
equivalent to the Birkhoff-von Neumann theorem which asserts that a doubly
stochastic matrix i3 a convex combination of permutation matrices. In this
paper, our main subject of interest is the case of nonbipartite graphs. However,
most of the development remains valid, and considerably simpler, for bipartite
graphs, when we take Q = 0. Generally we will omit pointing this out, however
we will indicate when differences arise.

Suppose we add a slack variable z|, to each inequality (2.5) and then make
the substitution z, = 1 — z|,. Then we obtain the following:

Corollary 2.2: The polyhedron Z defined by the following linear system has
only integer vertices:

u>0,0<z<1;
u(é(v)) ~z, =0 foral veV,;
u(7(S)) <(|S|-1)/2for all S € Q.
In fact, each vertex (u,z) of Z satisfies the following: u is the incidence vector
of a matching of G and z is the incidence vector of the vertices saturated by the

matching. Conversely, each such u, z defines a vertex of Z. Therefore PMS(G)
is simply the projection of Z onto the subspace of the z variables.

In order to apply the projection method of this section, we first identify
the various components of our linear system:

A' is the node-edge incidence matrix of G;

B! is the negative of an identity matrix;
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b' is a zero vector;
has one row for each S € @, and that row is the incidence vector of ¥(5);
B* s zero;
b* has one entry for each § € @ having the value (|S] - 1)/2.
Finally, D = {z:0 <z < 1}.

Our main object of attention is the cone W = {(y,z) : yA' + zA* >0,z >
0}. That is, we assign a value y; to each 1 € V and a nonnegative value zs to
each § € @ such that

vty + 3 (25:4,7 €S, S€Q)20forall iy € E.

Proposition 2.3: W 1is a pointed cone if and only if every compcnent of G is
nonbipartite.

Proof. WT= is the set of all vectors of the form (y,0) where y satisfies y; +y; = 0
for all 17 € E. If a component has an odd cycle, then these equations imply
y: = 0 for all nodes 1 of this cycle, which in turn implies that y; = 0 for all ¢ in
the nodeset of the component. If a component is bipartite, with bipartition of
the nodeset K; U K, then the vector y defined by

—a forie K,

a forie K,
!}.:{
0 fori¢ Ky UK,

is in the cone for all a. Therefore W= = {0} if and only if every component of
G is nonbipartite.

0

If G is not connected, then a linear system sufficient to define PMS(G) is
obtained by concatenating such systems for the various components. Hence we
can assume that G is connected. In this case, in principle, all we have to do is
give a complete set of generators of W. If G is nonbipartite, this is equivalent to
describing the extreme rays of W. However, in fact we can do less than that for
there will be extreme rays of W which do not yield facet inducing (essential)
inequalities for PMS(G). Moreover, there will be distinct extreme rays which
yield the same facet inducing inequality for PMS(G).

Proposition 2.4: If G = (V, E) is connected and nonbipartite, then PMS(G)
is of full dimension.
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Proof. We exhibit |V|+ 1 members of PMS(G) which are affinely independent.
Let T be a spanning tree of G and let j be an edge which creates an odd cycle
when added to T. For each k € E(T)U {j} we define a vector z¥ € PMS(G) by

letting
k _[1 ifveVisanendofk

T, = {O if v € V is not incident with k.

An easy inductive argument shows that these vectors are linearly independent.
Moreover, z*¥(V) = 2 for all k € E(T) U {;}. Hence the zero vector, which is
also in PMS(G) cannot be expressed as an affine combination of these vectors,
so these give the required set of |V| + 1 vectors.

O

A consequence of Proposition 2.4 is that when G is nonbipartite and
connected, the minimal defining linear system for PMS(G) is unique, up to
positive multiples of the inequalities. We say that two valid inequalities for
PMS(G) are equivalent if one is a positive multiple of the other. We already
have the inequalities 0 < z, < 1 in our defining system for PMS(G); they
made up the definition of D. We say that a valid inequality is trivial if it is
a positive multiple of one of these inequalities. Otherwise, we say that it is
nontrivial. Similarily, we call a facet of PMS(G) trivial if it is generated by a
trivial inequality and otherwise nontrivial.

In [2] we showed that if G = (V; U V3, E) is bipartite and connected, then
PMS(G) is of dimension |V; U V| — 1. The unique (up to positive multiples)
equation satisfied by all members of PMS(G) is z(V;) — z(V,) = 0. In this
case two valid inequalities for PMS(G) are equivalent if one is obtained from
the other by multiplying by a positive constant and then adding an arbitrary
multiple of the equation z(V;) — z(V2) = 0. Again, trivial inequalities are those
equivalent to an inequality z, > 0 or z, < 1, for some v € V; U V5.

Proposition 2.5. For any (y,z) € W, the inequality az < aq¢ is valid for
PMS(G), where a and ag are defined by

a=-Yy

ag = Z(zs (IS]-1)/2: S € Q). (27)

Conversely, if az < ag is a nontrivial facet inducing inequality for PMS(G),
then there ezists an eztreme (y,z) € W satisfying (2.7).
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Proof. Apply formulae (2.1) to the matrices B!, B and vectors b*,b* defined
above.
O

Note that there may be many extreme members of W (all having the same
y-component) which satisfy (2.7). They will all yield the same valid inequality
for PMS(G). What is important for us is the fact that the lefthand side of a
facet inducing inequality depends only on y and the righthand side depends
only on z.

We now describe a particular set of vectors of W which we will then show
are sufficient to generate all nontrivial facets of PMS(G). Let

T = {X C V : each component of G[X] has an

odd number of nodes}.

For any A C V, we let I'(A) denote the neighbour set of A. That is, ['(A)
consists of those nodes not in A but adjacent to at least one member of A. For
any X € 7 and any a > 0 we define the following vectors:

-a fveX
yXe = {a if v € I(X)
0 otherwise,
X {2a if S € Q and G[S] is
zg = a component of G[X],
0 otherwise.

Note that, for X € T, there may be singleton components of G[X]. However,
z5*® > 0 only if |S| is odd and at least 3.

It is easy to verify that, for any X € 7 and any a > 0, the vector

(y*¥=,2%=) € W. We now show that if az < « is a nontrivial facet indu-
cing inequality for PMS(G), then there exists X € 7 and a > 0 such that
(yX@, 2%} gives this inequality. Our proof makes use of the following two
notions. A family F of subsets of V is said to be nested if, for any S,T € F,
whenever SNT # 0, either S C T or T C S. If F is a nested family of sets,
then we let G x F denote the graph obtained from G by shrinking the maximal
members of F to form pseudonodes. For any S € F, we let F[S] denote the
subfamily of F consisting of all members of F properly contained in S. Thus

G[S] x F|[S] is the graph obtained from G[S], the subgraph of G induced by S,

)
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S
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-f, by shrinking all maximal members of 7 properly contained in S. See Figure 1.
T Note that G[S] x F[S] can have multiple edges, whether or not G has multiple
o edges. However, shrinking cannot create loops, as such edges disappear in the
g shrinking process.
e
!
by .
2 <
.::_. \
. [
_ 7
I.\-.
A
e Gl x 18]
o
el nodesets belonging to nested family F

[} pseudonodes

Figure 1. Nested family and shrinking
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Theorem 2.6 Let az < a9 be a nontrivial facet inducing inequality for

::' Y PMS(G), for a connected graph G. Then there exists X € T and a > 0 such
oo that
9 ay = -yXforallveV,

J‘\.J

X a0 =y (5 (IS|-1)/2: S € Q).

NS

{;: Moreover, the sets S € Q such that zif“' > 0 are disjoint, and for each
d such S,G|(S) is connected and nonbipartite.

Proof. By Proposition 2.5, there exists extreme (y,z) € W such that a and aq
- are given by (2.7). Forany z = (z25: S € Q) welet Z(z) = > (25 (I1S| - 1)/2:
S € Q). We establish four claims:

:j Claim 1.For any (y',2') € W satisfying y' > y, we must have
P Z2(z) - Z(2") <y (V) —y(V). If y' #y, then this inequality is strict.
L

For let a'z < ap be the valid inequality for PMS(G) corresponding to
(y',2'), defined by (2.7). If for each v € V, we add (y, —y,) times the inequality
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S roo0lowe obtain ar gy - (y OV = Voo Sines ar o wy s facet cndiene
S we must have ag - iy tVi—y(Vi 2 ag. If y' =y, then since ar © ag idiees

nontrivial facet. and we have obtained 1t from anotiter inequaity by adding 1

- nositive multiple of z,. < 1 for at Jeast one v = 1", we must have 2y - " 1

S V) > ag. For otherwise we would have expressed a facet inducing mnequaat
e 4s a nonnegative combination of other valid. nonequivaient inequalities.

\ . . . . ,

acha Claim 2. We can assume that Q' = {5 = & : :5 » 0} s a nested furuly.

e For suppose iy, :) € W satisfying (2.71 is ~hosen such that M=o 5~
o S £ &) is maximized. 1Since Zlz) = ag, and z - 0. this maximum exists
Suppose there exasts S, 7 = @' such that § T = J but 5 0 T oane [0~

Assume zs < IT.

'

First suppose S~ T is even. Define y', 2’ as follows:

. g fvgsS-T
- yv—{~

o Yo+ 25 ifve ST,

= tw~zs HW=S8STorW=T"F5,

Y 4 _Jezr-22s UW=T

';_.jj".‘ Iw fWe Q\{S,T.5\T.T" S}.
. For any edge uv, we have y, +y,+ 35 (21 : W € Q) Sy ~yo~ iz 1 1 2 O
::'_:j so (y',z') € W. Moreover ' >y, y' # y. But

oS Z(z) - 2(z")

=z5-{((S1~1)/2~ (IT| = 1)/2} = zs{(IS\T" = 1);2 « (T".5" - 11 2}

=0 =25 ST =y (V) —y(V),

which contradicts Claim 1.

Therfore, 'S © T must be odd. Define ' as follows:

- w+zs UW=8_TorS"T,

e o _Jerr-zzs HW=T

s w0 HfWw=3=5

D sw if W e Q\{S, T,s~T.5._ T}

Again, (y,2") £ W and Z(z) = Z(z'). Therefore (y,z') satisfies (2.7}, but
Swgg(ZW\W'lz) < S iweolzwiW?), a contradistion to our choice of 12,
which establishes Claim 2.
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b

let £ = {up -
’rvj - 4‘.‘5'.

Claim 3. Let 5= Qand let &b & 5 "N Tl

onnected and (5w wonbipartite

First we show that (7= S 1sconnected. I oot it s ot e

with an odd number of nodes; let A he the noceser ot L e
A - man \“-)‘yu = Ye ’S:':W' W= {IYL.L‘ = W o N

hen A - ) Detine iy 2" by

I - A W =N
= A W =R
2w otherwise.

Then 1y'. 2" ¢ W oand y'(V) - y(V) = %A SK and 7z -

At Kosy o LA S K . But since y' > y and ' # y. tius contrad.

& -

[F]]

{Jaim 1.

Now suppose that G is bipartite with bipartition V; _V,, where V. < 1
We define the following: R; is the set of real nodes in V), P, is the set o
nseudonodes of V) and P, is the set of real nodes contained in nodes of F--

R~. P, and P, are defined analogously for V,. Let

A = min({zw : W is a set of real nodes forming a node of P}
AYu =~ Yo ~ I(:w We QuveW)uve E(G),u.ve Py _ R>)
~{5l}

Define y'. 2" by

v = jyu».l fve R _P
N S otherwise;

w ~ A if Wis the set of nodes shrunk to
form a node of P,,
Sw = 2w - A if Wis the set of nodes shrunk to

form a node of P, orif W = §,
Iw otherwise.
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See Figure 2.
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First, our choice of A ensures that (y',z') € W, moreover y' > y and
y'(V)=y(V) = A-|RiUP,|. But Z(2)—Z(2') = (1P, |—|Pi|=|Po|+| P2 |+]5|-1)
and since |S| = |R1|+|Pi|+|Ra|+|Ps| we have Z(z)— Z(z') = 4(2|P1|+2|Ry| -
|R1| = |Py|+|Ps|+|Ra| - 1) = A(|Pr] +|Ra[)+ §(IVa| = V2| - 1). Since |S| is odd
and V3| < Vi, we must have [Va| V| —1 2 0,50 Z(z)— Z(=") 2 y'(V) - y(V)
which contradicts Claim 1, since V; # 0 implies y' # y.

Claim 4. For all S,T € Q',SNT = 0. Forany S € Q', for allv € S,y = —3zs.

Forany S € @', welet ps = Y.(zw : W e Q, W 2 S). Let S bea
minimal member of Q'. By Claim 3, G=[S] is nonbipartite and connected. By
considering the nodes belonging to an odd cycle of G=(S] we see that we must
have y, = —%ps for all nodes v of this cycle, and so, since G=[S] is connected,

Yo =—-;‘-ps for all v € S. (2.8)

If there are nondisjoint members of Q', then since it is a nested family, we
can choose a set T' € Q' which is not minimal in Q', but all members of Q'
contained in T are minimal. Let S be a member of Q' properly contained in 1.
LetveS.

By (2.8), we have y, = ~1(pr + z5). Now consider the graph G = G[T| x

RSN

e
[n

N Co

TN A AT
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12 The perfectly matchable subgraph polytope of an arbitrary graph

Q'[T). By (2.8), for any nodes u,w belonging to the same pseudonode W of G,
we have Yy, = Y = —%pw. Since G is connected, it is an easy inductive exercise
to show that, for each node u € T, we either have y, = —3(p7 + z5) if u or the
pseudonode containing it is at an even distance from Sin Gory, = — %(pT— zs)
if this distance is odd. Moreover, each edge of G joins nodes having different
values. But this then implies that G is bipartite, which contradicts Claim 3.
Hence all members of Q' are disjoint, which together with (2.8) establishes the
claim.

(Note that if G is bipartite, then Q@ = Q' = @ and so Claims 2, 3 and 4 are
vacuous.)

Now it is easy to complete the proof of Theorem 2.6. Let V*, V'~ and V?°
be the sets of nodes v where y, > 0, y, < 0 and y, = 0, respectively.

Since z > 0 we see the following:

(i) No edge uv € E can join two nodes of V~ unless they belong to the
same S € € and zs > 0, (or else we would contradict feasibility).

(i) T(V-)CV+,
(iii) E= CU{NS):Se @IU{uv:ue V+ve V- (V).

But now if we let X = V~ and a = a¢ and consider the vectors y*** and z%,
we see that they give a member of W for which we have equality in (iii) above.
But since (y, z) generates an extreme ray of W, the set of inequalities defining
W which hold as equations must be maximal, so we must have had, in fact,
y = ¥y and z = zX'* and the proof is complete.

C

We can now combine Proposition 2.5 and Theorem 2.6 to obtain the fol-
lowing system sufficient to define PMS(G) for a general graph G = (V, E). For
any S C V, we let x(S) be the number of connected components of G[S)].

Theorem 2.7. For any graph G = (V, E),

PMS(G)={z € RV :
0<z<1
z(5) - z(T(S)) < IS| - «(S) (2.10)
for all S C V such that every component of
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G1S! consists of either a single node or clse

‘r‘v:\:t
e

is a nonbipartite graph with an odd number of nodes}.

'y
Pty
[ s

We conclude this section with two remarks. First, it is not true that every
extreme ray of W has the form (y%<,z%*) for some X € 7 and a > 0.
Consider the graph of Figure 3.
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o Figure 3.
We let 4, = —1 for all nodes v ¢ {b, f},and let g, =gy =1. Welet ys =0
'_:::: for all S € Q\{{¢,9,d},{9g,d,e}} and define §s = 2 for these two triangles.
D) Note that we have equality in the constraints defining W for every edge except
" gd. It is easy to check that (y, Z) is the unique member of W, up to nonnegative
- multiples, which satisfies this and has s = 0 for all $ € Q\{{¢,9,d},{g,d,e}}
::?.: and so generates an extreme ray of W. However, the valid inequality for PMS(G)
Y obtained from (7, z) by Proposition 2.5 is
-"::::j Ta+Zc+ZTa+ZTg+Te—Tp—2Ty5 <4 (2.9)
, If welet S ={c,g,d,a}, then we obtain the following inequality from Theorem
o 2.7:
[ .
Ta+Zc+ZTg+Ta—2Zpb—2Z5—z. <2
':'.::: If we add twice the valid inequality z. < 1 to this, we obtain (2.9), so this is
7::’-."_ an example of an extreme ray of W generating a valid, but non-facet-inducing
N inequality for PMS(G).
N
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Second, we note that it is easy to deduce Tutte’s theorem (8] characterizing
Bl those graphs which have perfect matchings from Theorem 2.7. For Theorem
YN 2.7 implies that G has a perfect matching if and only if the vector £ obtained
o by defining £, = 1 for all v € V satisfies our linear system. But this holds if
- and only if [['(S)| > x(S) for all S € 7. So if G has no perfect matching, then
» there exists a set X C V such that G\ X has more than |X| odd components -
i which is the “hard” direction of Tutte’s theorem.
) 3. Relationship to the Bipartite Case.
In [2] we showed that the following linear system is sufficient to define
PMS(G) for a bipartite graph G = (V; U V, E):
o PMS(G) = {z € RV :
- 0<z<1,
& z(S) — z(I'(S)) < 0 for all S C W5,
C (%) - 2(%) = 0}.
_Z::: We can deduce this result easily from Theorem 2.7. Applying Theorem 2.7 to

G, we obtain an inequality (2.10) for every S C V such that S is independent,
i.e., no two members are adjacent. This inequality will be z(S§) — z(I'(S)) < 0.
Combining the inequalities corresponding to V; and V; we obtain the equa-

L ]
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*

T

H-}-

::E: tion z(V1) ~ z(V2) = 0. With this equation, it is straightforward to deduce
"'._r_ the inequality z(S) — z(I'(S)) < 0 for independent sets S € V; from those
X corresponding to S C Vj. (See [2] for details.)

'; What is more surprising is that we can deduce Theorem 2.7 from the bi-
\ ':Z;: partite result, plus the so-called Edmonds-Gallai structure theorem. (Anderson 4
"' (1] used an argument with a similar structure to derive Tutte’s Theorem from
1 :;. Hall’s Theorem, which characterizes those bipartite graphs having perfect mat-
; chings.)

~.::: The derivation of the nonbipartite result is easier if we use the following
;:::: minor extension of the bipartite theorem. Let G = (V; U V4, E) be a bipartite
O graph. We say that W C V; UV; is V) -matchable if there is a matching of G[W)
7
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which saturates all nodes of W N V;. In other words, W consists of a set U such
that G[U] has a perfect matching plus, possibly, some additional nodes of V5.

Theorem 3.1. For a bipartite graph G = (V; U V,, E), the convex hull of
the incidence vectors of the Vi-matchable subsets of V} U V, is given by

0<z<1
z(S)—z(T'(S)) <0forall SC V.

Note that the only change from the defining linear system for PMS(G) is that
the equation has been removed, leaving only the inequality z(V;) — z(V2) < 0.

This result is derived in [2] as a special case of lattice polyhedra. It can
also be easily deduced using the projection method of [2}. Or, it can be deduced
directly from the characterization of PMS(G) as follows: Construct a bipartite
graph G’ by adding a new node w(v) and a new edge joining v and w(v) for each
v € Va. Let W be the set of these new nodes and for S C V3, let w(S) = {w(v) :
v € S}. There is a 1:1 relationship between perfectly matchable subgraphs of
G' and Vi-matchable sets of nodes in G. By using the characterization in [2] of
the minimal linear system necessary to define PM S(G'), we obtain

PMS(G') = {(z,y) € R"*“"“W guch that
0<z<1,0<y<1
Z(5) + y(w(I'(5))) — z(T(S)) <O forall S C W,
z(V1) + z(W) — z(V2) = 0}.
But now we can use Fourier-Motzkin elimination to eliminate the y variables.
This is particularly simple, since each variable y, only occurs in a single inequa-
lity ay < a with a negative coefficient, namely —y, < 0. Hence, all we need to

do is eliminate these variables from all inequalities where they appear with a
positive coefficient, which gives the result.

A graph G = (V,E) is called eritical, (or hypomatchable) if, for every

v € V, G\{v} has a perfect matching. A matching which saturates all nodes
but one of G is called a near perfect matching. A critical graph is nonbipartite,
and has an odd number of nodes. The Edmonds-Gallai partition of a graph
G = (V, E) is the partition of V into O(G) U I(G) U P(G) defined by

O(G) = {v € V : some maximum matching of G leaves v unsaturated};

I(G) =T(0(G));

P(G) = V\(I(G) U O(G)).
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16 The perfectly matchable subgraph polytope of an arbitrary graph

Note that every maximum matching saturates all nodes of I(G) U P(G),
and if G has a perfect matching then P(G) = V and I(G) = O(G) = 0.
Theorem 3.2 (Edmonds-Gallai Theorem, see Lov4sz and Plummer [6]§ 3.2):
For any graph G,

i) every component of O(G) is critical;
ii) a matching M is maximum if and only if
a) M induces a perfect matching of G[P(G)];

b) each node in I(G) is joined by an edge of M to a node of a distinct
component of G[O(G)};

¢) M induces a near perfect matching on each component of G{O(G)].

If Edmonds’ maximum matching algorithm (5] is applied to G, it determines
the Edmonds-Gallai partition in polynomial time.

Let ¢ = (¢, : v € V') be a vector of node costs. We consider here the linear
program '
maximize cz
subject to 0 <z <1,
2(S) —z(T(S)) < |S| —~w(S)for SeT. (3.1)
(Recall that T = {S C V: every component of G[S] has an odd number of
nodes }.)

The dual linear program is the following:

minimize y(V) + Y _(z5-(IS| +«(S5)): S € T)

subject to y,z > 0,

Vot I (25:S€T,we8)~ Y (25:S€T,veT(5)) 2 ¢y (3.2)
for all v € V.

We will show that for any vector ¢ of node costs these linear programs have
feasible solutions z* and y*, z*, giving identical objective values ard such that
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z* is 0 — 1 valued. Since the 0 — 1 valued solutions to (3.1) are precisely ihe
- incidence vectors of members of W, this will show that PMS(G)= {z € R' :
" 0 <z <1and z(S) — 2(I(5)) < |S| - z(5) for all S € T}. Then all we need
\\ to show to obtain Theorem 2.7 is that constraints (3.1) for § € T such that
- G[S] has nonsingelton bipartite components are redundant. But this is easy
'\‘::. for suppose K is such a component of G[S], for S € 7. Let K; and K be the
% nodesets of the two parts of K, where |K;| > |K.| and let S' = S\K;. (Each
- node of K, is a singleton in G[S'].) The constraint (3.1) corresponding to S
Eij::: is implied by the sum of the constraint (3.1) corresponding to S', plus twice
the sum of the constraints z, < 1 for v € K, plus the sum of the constraints
SN —z, < 0 for v € T(S)\(S").

S The following is an outline of how we obtain y*, z* and z*. First we consider
,‘ the graph G' induced by the nodes with nonnegative costs. If this graph has
-‘ -j.':;j a matching which saturates all nodes with positive costs we construct y* and
S > z* trivially. If not, we apply the Edmonds-Gallai theorem and construct a
T bipartite graph with a node for each component of O(G') and a node for each
e neighbour in G of a node in O(G'). We define appropriate node costs, then
-; - we use Theorem 3.1 to obtain primal and dual solutions which we then use to

construct the desired z*,y*, z*.

Now we describe the details. Let W = {v € V : ¢, > 0}. If G[W] has
e a matching M which saturates all nodes for which ¢, > 0, then let z* be the
- incidence vector of the set of nodes saturated by M, let y; = maz{0,c,} for all
L v € V and let z* = 0. These vectors are feasible and since cz* = y*(V), they
are optimal. (This includes the case W = 0.)

e If no such M exists, then W # 0 and we define a bipartite graph G =
' :::::: (ViUVs, E) based on the Edmonds-Gallai partition of G' = G[W). Let K(O(G")
oy be the set of nodesets of the components of O(G'). Construct a node v(K) € V;

for each K € K(O(G")). Construct a node ¥ € V, for each node v of G (not G’
') which is adjacent in G to a node of O(G'). Join v(K) € V; and ¥ € V5 in G if
there is an edge of G joining v to a node w € K. Note that G is isomorphic to
N the graph obtained from G[O(G') U I'(O(G'))] by shrinking all components of
-~ O(G') to pseudonodes and deleting all edges with both ends in ['(O(G")). See
L Figure 4.
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13 The perfectly matchable subgraph polytope of an arbitrary graph

oG")
<
(G )
o r(0(G") .
- other nodes v with C, < 0
rr
'f.:l
N3
o~ G
..2
4
P(G)
Vy
G

Figure 4. Definition of G.

For v(K) € Vi, let Ey k) = min{c, : w € K}. For v € Vs, let & = c,.
Then &, > 0 for all v € V; and G has a matching M which saturates all 7 € V,
for which ¢z 2 0, (i.e. all ¥ € V; such that v € W) by property (ii b) of the
Edmonds-Gallai Theorem.

Now, let X* be a Vj-matchable subset of V; U V4, for which &(X*) is
maximum, and, subject to this, X* is maximal. Then X* must include all
v € V, for which & > 0. We claim that

G[X"] has a perfect matching.

A IO Y|
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For let M be a maximum cardinality matching of G{X*]. Since X* is V-
matchable, all nodes of V; U X* are saturated. Suppose that w € Vo 1N X~
is not saturated. If &g < 0, then ¢(X*\{w}) > ¢(X"*), a contradiction. So we
must have &z > 0. Let M’ be obtained from M by deleting any edges incident
with nodes v € V having ¢z < 0.

Then M'AM (where A denotes the symmetric difference) will include a
path P which joins W to some u € V; such that the edges of P are alternating
in M and M', and u is unsaturated by M'. Let M be obtained from MAP by
removing the edge of M from u to 7 € V, if such an edge exists. Let X be
the set of nodes saturated by M. Then either we have &(X) > ¢(X*) or else
#(X) =¢X*)and X D X*, in either case a contradiction to our choice of X*.

Let ¥,z be an optimal solution to the problem dual to maximizing ¢z
subject to the constraints of Theorem 3.1, for G, . Then

(Vi UVa) = 8(X°), (3.3)
7,220, (3.4)
yv+2(‘25:veSng)ZE,foraﬂvEVl, (3.5)
Vs — ) (Zs:9€T(S),SC W) >Gforall 7 € Vs (3.6)

We need one additional fact. Since ¢, > 0 for all v € Vj, we can require
(3.5) to hold with equality for all v € V;. For suppose 5,+>.(Zs:ve€ S C W) >
C» > 0, for some v € V). Minimality of y(Vj UV3) implies that §, = 0. Therefore
there exists S C'V; such that v € § and §5 > 0. Let 0 = min{Z5,¢, - > (Zs:
v € § C V1)}. We obtain a new feasible dual solution by lowering Zz by o and
raising zg, () by o. Repeating this we will have

Yot D (Zs:0€SC Vi) =G, forallve Vi (3.7)

Now we construct the desired z* as follows: For each K € K(O(G')),
choose a node ux for which ¢, is minimum. Let

lif ve P(G')
orvel(O(G') and v € X*
z, = or v € K € K(O(G")), unless
v=ug and v(K) ¢ X*
0 otherwise.

-
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It follows from the fact that G[X *] has a perfect matching plus the Edmonds-
e Gallai theorem that z* is feasible. Moreover,

-: cz* = c¢(P(G')) + ¢(X*) + ¢(O(G")) - 2:(%,‘r : K € K(O(G"))). (3.8)
L Now we construct the desired y*,z* as follows: For S C Vi, let K(S) €
. -3 O(G') be the union of all those K € K(O(G')) for which v(K) € S. Let

= Co if v € P(G"),
.::. .« _ yv(K) + Co — Cuy ifveKe K(O(G’)),

: R if v € T(0(G")),
0 otherwise;

;,: z}:{fs ifT=.K(5)f0rS§V1,

ogs 0 otherwise.

; Feasibility of y*, z* follows from the construction of G, ¢, and (3.4) - (3.6).

T Moreover, |
o v (V) + Y 22(IT = s(T))

TeT
(- SoP@N+ S K ugaey  cux) + (KO}

x'::{ KeK(o(@")

o +3(V2)+ Y. (KI-1)) (3s:v(K)€S)

N KeK(0(G")

—ePE@N+ Y (K- Do+ Y (B oK) € 5) ~ g
O KeK(0(G")) SCwvi

o +e(O(G)) +F(Vi UVa) = D (cux : K € K(O(G")).

o

so Therefore by (3.3), (3.7) and (3.8), we have

= y'(V)+ Y #2(T| - &(T)) = cz°

o TeT

&

which establishes the optimality of z*,y*,z* and completes the proof.

) 'f.::: 0
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-
:::' 4. Facets of PMS(G).

In this section we characterize those inequalities which induce facets of
PMS(G). For the trivial inequalities the situation is particularly simple. If G is
nonbipartite, then the inequality z, > 0 is facet inducing unless v is adjacent
'S to a degree one node w, in which case the inequality is obtained by adding the
inequality —z,, < 0 to the inequality (2.10), taking S = {w}. The inequality

1 3
FLISVRI A

wise, let X = X'U {v}. In either case, G' has at least |X| + 1 odd components.
o If a component K of G' had an even number of nodes, then adding an arbitrary
o node of K to X' would contradict the maximality property of G'. If any node
of X' is adjacent only to nodes of X' then we can remove this node and again
contradict the maximality of G'. Finally, if some odd components K of G' is

' :‘_C z, < 1isfacet inducing unless w is a degree one node (in which case it is implied

‘_" by the inequality (2.10) with S = {w} plus z, < 1, where v is the neighbour) or
';3 G = (V, E) is a triangle (when it is obtained by adding the inequalities (2.10)

for S =V and S = {w}). The proofs are easy and we leave the details to the

by reader. The bipartite case is treated in [2].

« The main interest is in characterizing those inequalities (2.10) which induce
;':;3 facets, which we do for general (bipartite or nonbipartite) graphs. We make use
® of two lemmas. The first follows easily from Tutte’s theorem, we give its proof
for the sake of completeness.

= Lemma 4.1(cf. Pulleyblank and Edmonds [7]) If G = (V,E) is not critical

) :'-j but |V| is odd, then there ezists X C V such that every component of G[V\X|
' is critical, there are at least | X| + 1 such components and every node in X 1is

- adjacent to a node in V\X.

Proof. We use induction of the size of G. If G is not critical, then there

:I:j exists v € V such that G\{v} has no perfect matching. By Tutte’s theorem,

9 there exists X' C V\{v} such that G[V\(X'U {v})] has at least |[X'| + 2 odd
N components. Choose such an X' for which the number of odd components of
o G' = G[V\(X' U {v})] is maximum. If ['({v}) C X', then let X = X', other-
\.-

< _ not critical, then by induction there exists X C V(K ) satisfying the conditions
7 of the lemma. Again, X’ U X contradicts the maximality property of G'.

-

e 0
<,

Y The second lemma characterizes those sets T € W which satisfy (2.10)

‘e

®

2 '
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.:':;-j
: ' with equality for a given § € 7. (Recall that W is the family of subsets of
Bt nodes saturated by some matching of G.)
,.:f.j Lemma 4.2. Let S € T and let T be the set of nodes saturated by some matching
o of G. Then the incidence vector £ of T satisfies
- £($) - £(T(S)) = 15| - ~(S)
.;
-~ if and only if
w2
b (4.1) for each component K of G[S], T contains all but possibly one node of
K,
o
‘ (4.2) there ezists a perfect matching of G[T) which joins each node of T NT(S)
o to a node of a distinct component K of G[S] for wkich V(K) C T.
AN
o Proof. Let M be a perfect matching of G[T). For each component K of G[S],
- let Mg be the set of edges of M with both ends in K. Let M; be the set of
= edges of M which join nodes of S to nodes of I'(S) and let M; be the set of
edges of M which join nodes of I'(S) to nodes not inS. For each component K
of G|S),2|Mg| < |V(K)| — 1, so if % is the incidence vector of T , then
£(S) - 2(T(S)) < > _(2IMk| : K is a component of G[S])
+ | My| = [My| - | M|
_ <Y (IV(X)| - 1: K is a component of G[S])
. = |S| - &(S5).
- Therefore we have equality if and only if M; = 0 and 2|Mx| = |V(K)| -1
o for every component K of G[S5], i.e., if and only if (4.1) and (4.2) hold.
I
i .
w7
o Theorem 4.2 Let G be nonbipartite. For S € T, the inequality (2.10) is
o facet inducing for PMS(G) if and only if
o .
'.','J‘-E' (4.3) every component of G[S] is critical;
¥
' (4.4) every component of G\(S U T'(S))) is nonbipartite;
e
o
"{-:l
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-

— (4.5) the graph obtained from G[{SUT(S)] by deleting all edges with both ends
=N . in T'(S) is connected.

roof. We first show the necessity of our conditions. If (4.5) is violated, then
the inequality (2.10) corresponding to S can be deduced by adding the inequa-
lities corresponding to S N V(K) for all components K of G[S U T'(S)].

v ) Suppose (4.4) is violated and G[V\(S U I'(S))] has a bipartite component
X K. Let K; and K, be the nodesets of the parts. Adding the inequalities (2.10)
corresponding to SUK; and SU K gives us exactly twice the inequality (2.10),
so the inequality is redundant.

Suppose (4.3) is violated. If a component K of G[S] is not critical then

we apply Lemma 4.1 to find X C V(K) such that every component of K\X

is critical, there are at least |X| + 1 such components and [(V(K)\X) = X.

£ Let §' = S\X. Then I'(§') C I(S) U X and x(S") > &(S) -1 + |[X], i.e.,

. x(S') > k(S) + | X|. To the inequa.hly (2.10) corresponding to S, we add twice

AR the inequality z, < 1 for all v € X. This yields an inequality which implies

' z(S) — z((S)) < |S'| — x(S") + 2/X| < |S| - 5(S). Hence the inequality (2.10)
corresponding to S was redundant.

Now we prove the sufficiency. Suppose that (4.3) - (4.5) hold. We show that
A the inequality (2.10) is facet inducing by showing that for each other inequality
az < a used to define PMS(G), we can find £ € PMS(G) satisfying aZ < a but
::jl‘; £(S) - 2(T'(S)) = |S| — (S). For then if we take a positive convex combination
of these points, we obtain z* € PMS(G) for which the only tight inequality is
(2.10). For ¢ > 0,(1 + €)z* violates (2.10), so this point is not in PMS(G).
-' But for ¢ sufficiently small, this is the only violated inequality, so it is facet
o inducing.

';Z::; By (4.3), for each component K of G[S] we can choose an arbitrary node

F _; vk of K and construct a perfect matching of K\{vx}. If we do this for all com-

:.i: ponents, the set T of saturated nodes satisfies (4.1) and (4.2) so the incidence ‘
vector z7 satisfies (2.10) with equality. Now we consider the three types of
inequalities:

-t ' Case 1.z, <1forve V. For any node v, by choosing an appropriate T as
K~ above we have zI = 0, i.e., zT < 1, as required.

AR Case 2. z, > 0 for v € V. Choose T as above such that for each component !
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K of G!S], the node of K not in T is adjacent to a node of ['(S). For v € 5,
= if ve T thenlet T =T.If v € S\T, then let u be an adjacent node of v in
[(S) and let T = T U {u,v}. If v € [(S), then let w be a node of S\T in a
component of G[S) containing a node adjacent to v and let T = T U {v,w}.
Finally, if v € V\(S UT(S)), then by (4.4) there exists w € V\(S UT(S)) such
that v and w are adjacent. Let T = T U {v,w}. In every case, there exists
a perfect matching of G[T] and the incidence vector zT satisfies zT > 0 and

= 27(8) - 27(T(S)) = IS| - ~(S).
5 Case 3. z(U) —z(L(U)) < |U|~~(U) for some U € T\{S}. Suppose that every
"Z-', z € PMS(G) which satisfies (2.10) with equality also satisfies Z(U)—z(I'(U)) =

|U| — x(U). If G[S] has any component K with more than one node, then by
considering T as above which leaves each node of K in turn unsaturated, we see
o that either V(K) C U, V(K) C T(U) or V(K)N (U UT(U)) = 0. Suppose that
some component K of G[U] having three or more nodes were not contained in
S. We could take any T as above for S, and its incidence vector Z would satisfy
&(U) - 2(F(U)) < |[U| = »(U), by Lemma 4.2. Therefore

st g e
BERRRN KA

o \4.6) every nontrivial component of G[U] is contained in G[S)].

o Suppose W = U\S # 0. By (4.6), W is an independent set of nodes. If
- any nodes of I'(W)\I'(S) were adjacent, or adjacent to a node not in I'(S)U W,
we could start with any T as above for S, then add such an adjacent pair of
- nodes and the incidence vector Z would satisfy (2.10) for S, but not for U.
Therefore G(W U (I'(w)\I'(S)] is a bipartite component (or a collection of such
components) of G\(S U I'(S)), which contradicts (4.4). Therefore

o5 (4.7) U C S, and hence T(U) C I'(S).

Finally, suppose there exists w € S\U. Choose such a w adjacent to a node
u of I'(U), which is possible by (4.5). Then if we take T, as above, together
with u and w, the incidence vector again satisfies (2.10) for U but not S as
required.

L i~ 9
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For a case of a bipartite graph G = (V, U V5, E), we showed in [2] that, .
g for any S C Vi, the inequality z(S) — z(['(S)) < 0 was facet inducing if and
. only if both G[S U T(S)] and G[(V1\S) U (Va\I[(S))] were connected. Since in
the bipartite case, every z € PMS(G) satisfies the equation z(V;) — z(V,) = 0,
we see that any facet is induced by several different inequalities of the form

Ry
ol '
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‘":‘::EZ (2.10). In particular, suppose that S is some subset of V1 U Va;let S1 = SNW
b, and S2 = SN V2. Then (4.3) holds if and only if no edge joins two nodes of §
) k- and (4.4) bolds if and only if every node is in S UT(S). If either G[S; UT(Sy)]
:::j:i or G[S; UT(S2)] were not connected, then (4.5) would be violated. However,
1 connectivity of G requires there to be edges present joining nodes of I'(Sy) to
:’_:ﬁ;: nodes of I'(S2) and if we delete them, then the graph is no longer connected.
) Thus it is true that for a bipartite graph G, every facet of PMS(G) induced by

an inequality (2.10), is induced by such an inequality for S such that no edge
joins two nodes of S, every node belongs to S UTI'(S) and the graph obtained

n by deleting all edges with both ends in I'(S) has exactly two components. For
by adding the equation z(V;) — z(V2) = 0 to such an inequality we obtain
o z(S1) — z(T'(S1)) < 0 for S; C W, satisfying the conditions in [2]. In other
:‘_'_: words, Theorem 4.2 is also valid for bipartite graphs. It is also easy to modify
: : the proof of this theorem to obtair this directly.
h iy

Conclusions.

In [2]we introduced a technique for obtaining a linear system sufficient to
define a combinatorial polyhedron P from a defining linear system for a larger
polyhedron @ such that P is a projection of Q. In this paper we give another,
more complex, application of this method. The method consists of finding a set

VSR of generators for a particular cone and then “post multiplying” the generators
y -:;Z: to obtain the defining inequalities. In the case of perfectly matchable subgraph
T polyhedron of general graphs, we did not describe a complete set of generators
o of the relevant cone. However we did describe a set of generators sufficient to
produce all facet inducing inequalities. Thus one important point illustrated
b ool here is that it is not essential to have a complete set of generators of the cone,
_ in order to obtain the desired projection.

,_w.: We also discussed the relationship of the nonbipartite result to the earlier
. bipartite theorem [2]. In particular we showed that the bipartite theorem, plus
‘ 'L hy the Edmonds-Gallai structure theorem are sufficient to deduce the nonbipartite

result.

: 'Q_:_; An interesting related problem is the so-called separation problem for
' PMS(G): Given a vector £ € RY, either show that 2 € PMS(G) (by provi-

ding a set of vertices of PMS(G), of which it is a convex combination) or else

Y show that it is not, by giving an inequality az < a valid for all z € PMS(G),

' but such that az > a. This problem was solved by W.H. Cunningham and J.

,.
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Green-Krotki [3] as a special case of the problem of determining whether there
exists a (usually fractional) vector z belonging to the matching polyhedron
M(G) such that z(§(v)) lies between prescribed bounds, for all nodes v. Their
results also provide another proof of Theorem 2.7.
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